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Abstract Graph-based methods have aroused wide

interest in pattern recognition and machine learning, which

capture the structural information in data into classifier

design through defining a graph over the data and assuming

label smoothness over the graph. Laplacian Support Vector

Machine (LapSVM) is a representative of these methods

and an extension of the traditional SVM by optimizing a

new objective additionally appended Laplacian regularizer.

The regularizer utilizes the local linear patches to

approximate the data manifold structure and assumes the

same label of the data on each patch. Though LapSVM has

shown more effective classification performance than SVM

experimentally, it in fact concerns more the locality than

the globality of data manifold due to the Laplacian regu-

larizer itself. As a result, LapSVM is relatively sensitive to

the local change of the data and cannot characterize the

manifold quite faithfully. In this paper, we design an

alternative regularizer, termed as Glocalization Pursuit

Regularizer. The new regularizer introduces a natural

global structure measure to grasp the global and local

manifold information as simultaneously as possible, which

can be proved to make the representation of the manifold

more compact than the Laplacian regularizer. We further

introduce the new regularizer into SVM to develop an

alternative graph-based SVM, called as Glocalization

Pursuit Support Vector Machine (GPSVM). GPSVM not

only inherits the advantages of both SVM and LapSVM but

also uses the structural information more reasonably to

guide the classifier design. The experiments both on the toy

and real-world datasets demonstrate the better classifica-

tion performance of our proposed GPSVM compared with

SVM and LapSVM.

Keywords Support vector machine � Graph-based

method � Structural information � Pattern recognition

1 Introduction

Graph-based methods are currently hot issues in pattern

recognition and machine learning [1–4], which aim to

further grasp and fuse the structural information in data

into the recognition process in order to utilize the latent

data knowledge more fully. Generally, these methods first

construct a graph over the dataset where the nodes are the

given data and the weighted edges reflect the similarity

between the data [1]. Then they design the classifier by

estimating a function f over the graph, where f should be

close to the given labels on the labeled nodes and smooth

on the whole graph [1]. This process can be boiled down to

a regularization framework in many graph-based methods

[1, 5]:

min
f2Rn

Xn

i¼1

V yi; f ðxiÞð Þ þ kRregðfÞ
( )

ð1Þ

where the loss function Vðyi; f ðxiÞÞ measures the discrep-

ancy between the true labels and the estimated labels

produced by f for the data [6]. And the regularizer Rregðf Þ
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embeds the desirable properties of f over the graph, such as

smooth, discriminative, consistent.

Usually, the loss function Vðyi; f ðxiÞÞ can be selected as

the squares function, absolute value function, hinge func-

tion, exponential function, logarithm function, e-insensitive

function, and so on, which is relied on the different but

favorable statistical properties of these functions themselves

related to the Bayes consistency [7–10], and the requirement

of real problems such as regression and classification.

The regularizer Rregðf Þ is a key point in the graph-based

methods, which directly specifies the characteristics of

f [5]. Tikhonov regularizer [6] emphasizes the global

smoothness of f, that is, the similar inputs should corre-

spond to the similar outputs produced by f in the whole

data space:

RregðfÞ ¼ Dfk k2 ð2Þ

where D is a linear differential operator applied to f, which

is also referred to as a stabilizer because the smoothness

prior involved in it makes f stable [6, 11].

Different from Tikhonov regularizer, Laplacian regu-

larizer [12, 13] concerns the local smoothness of f over the

graph. It sets the weights of the edges as:

wij ¼
expð� xi � xj

�� ��2
=r2Þ if xi 2 neðxjÞ or xj 2 neðxiÞ

0 otherwise

(

ð3Þ

where ne(xi) denotes the nearest neighborhood of xi, in

which the nodes are connected in the graph. The

corresponding Laplacian matrix can be computed as [5]:

L ¼ D�W ð4Þ

where W ¼ ½wij� 2 Rn�n is the adjacency matrix of the

graph. D 2 Rn�n is a diagonal matrix and its entries are

Dii ¼
Pn

j¼1 wij. Laplacian regularizer utilizes the local

linear patches to approximate the data manifold structure

and requires f smooth over the patches:

RregðfÞ ¼ fk k2
I ¼

1

2

Xn

i¼1

Xn

j¼1

wijðfi � fjÞ2 ¼ f T Lf ð5Þ

Normalized Laplacian regularizer [14] is also widely

used in the graph-based methods. Its Laplacian matrix is

normalized symmetrically as:

Ln ¼ I � D�
1
2WD�

1
2 ð6Þ

where I is the identity matrix, and W and D are the same as

in Laplacian regularizer. So the regularizer can be

described as:

RregðfÞ ¼ fk k2
In
¼ 1

2

Xn

i¼1

Xn

j¼1

wij
fiffiffiffiffiffiffi
Dii

p � fjffiffiffiffiffiffi
Djj

p
 !2

¼ f T Lnf

ð7Þ

Local learning regularizer [5] further builds a linear

model in each neighborhood ne(xi) and then trains the

output function oið�Þ of the local model by some supervised

learning algorithms. The regularizer requires that fi should

be similar to the output of the model oiðxiÞ in order to well

estimate the value of fi based on the neighborhood of xi [5]:

RregðfÞ ¼ f � ok k2¼
Xn

i¼1

fi � oiðxiÞð Þ2 ð8Þ

Discriminative regularizer [4] concentrates on the

discriminative property of f, which is usually integrated

with the squares loss function. The regularizer constructs

two graphs to characterize the intra-class compactness and

inter-class separability respectively and thus aims to further

maximize the margins between the data of the different

classes in each local neighborhood:

Rdisregðf ; gÞ ¼ g~Sw � ð1� gÞ~Sb ð9Þ

where ~Sw ¼ 1
2

Pn
i¼1

Pn
j¼1 ðfi � fjÞ2ww;ij and ~Sb ¼ 1

2

Pn
i¼1Pn

j¼1 ðfi � fjÞ2wb;ij are the metrics defined over the intra-

class graph Gw and the inter-class graph Gb, which measure

the intra-class compactness and inter-class separability of

the outputs respectively. g is the regularizer parameter,

0 B g B 1.

In the past decade, different combinations of the loss

functions and regularizers or equivalent, prior penalty,

have derived a large family of graph-based methods [1, 15–

18]. Classical Support Vector Machine (SVM) [19, 20]

combines the hinge function with Tikhonov regularizer

(or smoothness penalty) in a Reproducing Kernel Hilbert

Space (RKHS) [6] to emphasize the discriminability and

global smoothness of the solution function f. Zhu et al.

[17, 21] utilized a squares function with infinity weight and

the Laplacian regularizer (or penalty over data manifold) to

develop the Gaussian random fields and harmonic function

methods which is a continuous relaxation to the difficulty

discrete Markov random fields [22] (or Boltzmann

machines) [1]. Zhou et al. [14] used the squares function

and normalized Laplacian regularizer to improve the con-

sistency of f in the semi-supervised classifier designs in

order to make f smooth with respect to the intrinsic

structure collectively revealed by labeled and unlabeled

samples. Wu and Schölkopf [5] proposed a local learning

regularization method for the transductive classification

problems by integrating the squares function with local

learning regularizer, which leads to the solution with the

property that the label of each sample can be well predicted

based on its neighbors and their labels. Xue et al. [5]

associated the squares function with discriminative regu-

larizer and presented a discriminatively regularized least-

squares classification method in supervised learning that

focuses on not only the discriminative information but also
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on the local geometry of the data and intends to maximize

the margins between the data of different classes in each

local area.

Different from the above approaches which combine the

loss functions with a single regularizer, Laplacian Support

Vector Machine (LapSVM) [23] further selects the hinge

function as the loss measure and combines the Tikhonov

regularizer and Laplacian regularizer as the regularizers.

That is, LapSVM is an extension of the traditional SVM by

optimizing the objective additionally appended Laplacian

regularizer to the SVM objective, which thus can fuse the

properties of the two type methods. On the one hand,

LapSVM embeds the local structural information of the

data manifold into SVM by the Laplacian regularizer with

the aim to utilize the geometric distribution to guide the

more effective classification. On the other hand, LapSVM

still maintains the similar characteristics to SVM, which

can maximize the margins between the classes. Moreover,

its optimization problem can also be formulated as Qua-

dratic Programming (QP) by some transformations and

solved by the same optimization techniques as SVM to

obtain the final sparse solutions. Though LapSVM has been

showed to be superior to SVM in classification perfor-

mance experimentally, it is relatively sensitive to the local

change of the data manifold due to that it concerns more

the locality than the globality of manifold structure. The

Laplacian regularizer emphasizes the approximation of

local linear patches to the manifold and assumes that all the

data on each patch share the same labels. However, its

relatively less concern on the global structural information

makes it unable to characterize the manifold faithfully.

In this paper, we present an alternative regularizer,

termed as Glocalization Pursuit Regularizer, which

respects both the globality and the locality of data manifold

so that the shortcomings of the Laplacian regularizer can be

avoided to some extent. The new regularizer can be proved

to characterize the manifold more compactly than the

Laplacian regularizer. We further introduce the new regu-

larizer into SVM and present an alternative graph-based

SVM, called as Glocalization Pursuit Support Vector

Machine (GPSVM). GPSVM not only possesses the merits

of both SVM and LapSVM but also captures the local and

global structural information more reasonably. Experi-

ments are conducted to demonstrate the superiority of our

proposed GPSVM algorithm compared well with SVM and

LapSVM.

The rest of the paper is organized as follows. Section 2

introduces the related works. Glocalization Pursuit Support

Vector Machine is presented in Sect. 3. Section 4 gives the

experimental results. Some conclusions are drawn in Sect. 5.

2 Related work

2.1 Support vector machine (SVM)

Here, we outline SVM to binary classification problems.

Given a training set xi; yif gn
i¼12 Rm � f�1g, the objective

of SVM is to learn a classifier f that can maximize the

margin between classes [23]:

min
f2HK

1

n

Xn

i¼1

1� yif ðxiÞð Þþ þ c fk k2
K ð10Þ

where 1� yf ðxÞþ ¼ max 0; 1� yf ðxÞð Þ is the hinge loss

function. fk k2
K is the standard Tikhonov regularizer in an

appropriately chosen RKHS that imposes smoothness

conditions on possible solutions. c is the corresponding

regularizer parameter.

By the Representer Theorem [20], the solution is given

by:

f �ðxÞ ¼
Xn

i¼1

a�i Kðx; xiÞ ð11Þ

where Kðx; �Þ is the kernel function defined in the RKHS

HK.

Following SVM expositions, the above optimization

problem can be equivalently written as [23]:

min
f2HK ;ni2R

1

n

Xn

i¼1

ni þ caT Ka

s:t: yif ðxiÞ� 1� ni; i ¼ 1; . . .; n

ni� 0; i ¼ 1; . . .; n ð12Þ

where ni is the penalty for violating the constraints.

a ¼ a1; a2; . . .; an½ �T , and K is the corresponding Gram

matrix.

Using the Lagrange multipliers techniques, the dual

problem of (12) can be represented as [23]:

b� ¼ max
b2Rn

Xn

i¼1

bi �
1

2
bTQb

s:t:
Xn

i¼1

yibi ¼ 0

0	 bi	
1

n
; i ¼ 1; . . .; n ð13Þ

where Q ¼ Y K
2c

� �
Y and Y ¼ diag y1; y2; . . .; yn½ �. This is a

QP problem that can be solved by Sequential Minimal

Optimization (SMO) algorithm and so on [20]. The final

solution a� is

a� ¼ Yb�=2c: ð14Þ
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2.2 Laplacian support vector machine (LapSVM)

For further controlling the complexity as measured by the

geometry of the data distribution, LapSVM adds an addi-

tional Laplacian regularizer into the SVM objective [23]:

min
f2HK ;ni2R

1

n

Xn

i¼1

ni þ cA fk k2
KþcI fk k2

I

s:t: yif xið Þ� 1� ni; i ¼ 1; . . .; n

ni� 0; i ¼ 1; . . .; n ð15Þ

The Laplacian regularizer, which is derived by a manifold

dimensional reduction method—Laplacian eigenmaps [12],

can be constructed as follows:

1. Constructing the adjacency graph: find the set ne(xi) of

the k nearest neighbors of each data point xi in the cth

class (c = 1, 2) and put the edges among the ne(xi).

2. Computing the edge weight:

wc
ij ¼

expð� xi � xj

�� ��2
=r2Þ if xi 2 neðxjÞ or xj 2 neðxiÞ

0 otherwise

�

ð16Þ

3. Constructing Laplacian matrix:

Lc ¼ Dc �Wc; c ¼ 1; 2 ð17Þ

where Dc is a diagonal matrix, Dii
c ¼

Pn
j¼1 wc

ij. Wc ¼
wc

ij

h i
2 Rn�n

4. Constructing the Laplacian regularizer fk k2
I : let

f ¼ ½f T
1 ; f

T
2 �

T
, where f c denotes the classification vector

in the cth class (c = 1, 2). Then,

fk k2
I ¼

X2

c¼1

Xnc

i;j¼1

wc
ij fcðxiÞ � fcðxjÞ
� �2¼

X2

c¼1

f T
c Lcf c

¼ f T Lf ð18Þ

where L ¼ L1

L2

	 

:

Consequently, the optimization problem (15) can be

rewritten as:

min
f2HK ;ni2R

1

n

Xn

i¼1

ni þ cAaT Kaþ cIf
T Lf

s:t: yif ðxiÞ� 1� ni; i ¼ 1; . . .; n

ni� 0; i ¼ 1; . . .; n ð19Þ

Belkin et al. [23] validated that the solution of LapSVM

also satisfies the Representer Theorem. Following some

transformations, the corresponding dual problem of (19) can

still be represented as a QP problem and solved by the same

optimization techniques as SVM. The final solution is:

a� ¼ 1

2
cAI þ cILKð Þ�1Yb�: ð20Þ

where I is an n 9 n identity matrix.

LapSVM relies on the Laplacian regularizer to embed the

data distribution, which utilizes the local linear patches

defined by the neighborhood sets ne(xi) to approximate the

data manifold. However, the regularizer emphasizes more

the local than the global manifold structures. In fact, the data

manifold in real-world problems always distributes non-

uniformly in the high-dimensional space. When the data

distribute compactly, the patch can approximate the linear

locality of the manifold well. But when the data distribute

sparsely, such an approximation is more likely distorted.

Hence, the global geometry of the manifold should also be

considered necessarily to differentiate different linear local

patches under the varying data distribution conditions and

characterize the manifold more faithfully.

3 Glocalization pursuit support vector machine

(GPSVM)

In this section, we propose an alternative regularizer, called

as Glocalization Pursuit Regularizer. The regularizer

introduces a natural measure to characterize the global data

distribution inspired by our previous manifold dimensional

reduction method—Alternative Robust Local Embedding

(ARLE) [24]—and thus can relatively faithfully capture the

local and global geometry information simultaneously. We

validate that the regularizer can describe the manifold more

compactly than the Laplacian regularizer. Therefore, it

more likely represents the data distribution factually and

facilitates the subsequent design for classifier. We further

embed the new regularizer into SVM and propose the

alternative GPSVM algorithm. The major properties of

GPSVM are discussed below.

3.1 Alternative robust local embedding (ARLE)

ARLE is originally proposed to mitigate the outlier sensi-

tivity problem in Locally Linear Embedding (LLE) [25].

For distinguishing the different linear local patches on the

manifold that are constructed by the normal data or the

outliers, ARLE defines the local and global weights

respectively for each data point to characterize the data

distribution.

The local weight measures the relative similarity

between each data point xi and its neighbors, which implies

that among all the neighbors of xi, the bigger the local

weight between the point and xi is, the more similar is it to

xi [24]. Concretely, we first use

sij ¼ expð� xi � xj

�� ��=r2Þ ð21Þ

to measure the similarity between xi and its neighbor xj just

like the weights in the Laplacian regularizer. Then, we
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compute a relatively robust reconstruction x̂i to xi by its

k neighbors through minimizing:

ei ¼
Xk

j¼1

sij x̂i � xj

�� ��2 ð22Þ

Let oei=ox̂i ¼ 0, the optimal reconstruction is given by:

x̂i ¼
Xk

j¼1

sijxj=
Xk

j¼1

sij ð23Þ

Let di ¼
Pk

j¼1 sij, we get the local weight:

wlocal
ij ¼ sij=di ð24Þ

The global weight is a natural measure based on the

local weights:

wglobal
i ¼ di=d ð25Þ

where d ¼
Pn

i¼1 di.

In the probability sense, the local weight reflects the

confidence degree of the neighbor xj relative to xi. The

bigger local weight means that xj is more likely a normal

data near xi, otherwise xj might be an outlier. Similarly, the

global weight reflects the confidence degree of the local

neighborhood relative to the whole manifold, which can

partially tell whether the linear patch defined by the

neighborhood can characterize the local geometry

faithfully.

Finally, ARLE computes the low-dimensional embed-

ding coordinate zi for xi by minimizing the following

weighted cost function:

U ¼
Xn

i¼1

wglobal
i zi �

X

xj2neðxiÞ
wlocal

ij zj

������

������

2

s:t: Z1n ¼ 0

1

n
ZWglobalZT ¼ I ð26Þ

where 1n¼½1;...;1�T 2Rn, Wglobal¼diag½wglobal
1 ;...;wglobal

n �
and I is the identity matrix.

3.2 Glocalization pursuit regularizer

After the robust reconstruction in ARLE, each xi has two

weights: the local weight reflects the local compactness in

the local linear patch, and the global weight reflects the

global compactness of the patch on the whole manifold that

can serve as a natural global structure measure. So here we

introduce the two weights into the construction of the new

regularizer fk k2
Glocal to grasp the global and local manifold

information simultaneously.

The new regularizer can be constructed as follows:

1. Constructing the adjacency graph: find the set ne(xi) of

the k nearest neighbors of each data point xi in the cth

class (c = 1, 2) and put the edges among the ne(xi).

2. Computing the local weight:

wlocal
ij ¼ sij=di if xi 2 neðxjÞ or xj 2 neðxiÞ

0 otherwise

�

3. Computing the global weight:

wglobal
i ¼ di=

Xn

i¼1

di

4. Constructing the weighted matrix:

LGlocal
c ¼ ðI �W local

c ÞWglobal
c ðI �W local

c ÞT ; c ¼ 1; 2

ð27Þ

5. Constructing the Glocalization pursuit regularizer

fk k2
Glocal:

fk k2
Glocal¼

X2

c¼1

Xnc

i¼1

w
global
i fcðxiÞ�

X

xj2neðxiÞ
wlocal

ij fcðxjÞ

0
@

1
A

2

¼
X2

c¼1

f T
c LGlocal

c f c¼ f T LGlocalf ð28Þ

where LGlocal ¼ LGlocal
1

LGlocal
2

	 

:

We can further prove that the new regularizer has the

more compact manifold description than the Laplacain

regularizer.

Proposition 1 Following the definition of (28), we have

fk k2
Glocal	 fk k2

I ð29Þ

Proof Without loss of generalization, we first consider

the class one (c = 1). Let the numbers of the two classes be

n1 and n2, respectively. Then,

f T
1 LGlocal

1 f 1 ¼ f T
1 ðI �W local

1 ÞWglobal
1 ðI �W local

1 ÞT f 1

¼
Xn1

i¼1

wglobal
i f ðxiÞ �

X

xj2neðxiÞ
wlocal

ij f ðxjÞ

0
@

1
A

2

¼ 1

d

Xn1

i¼1

X

xj2neðxiÞ
sij f ðxiÞ �

P
xj2neðxiÞ sijf ðxjÞP

xj2neðxiÞ sij

 !2

	 1

d

Xn1

i¼1

Xn1

j¼1

sij f ðxiÞ � f ðxjÞ
� �2

¼ 1

d
f T

1 L1f 1 ð30Þ

Following the same deduction, for the class two (c = 2),

we obtain
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f T
2 LGlocal

2 f 2 	 f T
2 L2f 2

Consequently, we have

fk k2
Glocal¼

X2

c¼1

f T
c LGlocal

c f c	
X2

c¼1

f T
c Lcf c ¼ fk k2

I

h

The above proposition validates that for the same dataset

and the same classifier function f, the new regularizer can

get smaller value than the Laplacian regularizer, implying

that it can make the data distribution more compact in the

space projected by f. The new regularizer introduces the

global weight to reflect the different local linear patch

distributions on the manifold to some extent. The bigger

the value of the global weight, the more compact the data

distribution on the patch is, which denotes that the patch is

more likely reliable for description of the manifold

geometry. Otherwise, if the patch is assigned a smaller

weight, its influence will be suppressed in the description.

Consequently, the new regularizer can more likely reach

the target that the similar data on the manifold within a

compact patch in the original space may organize more

compactly in the projection space and the dissimilar data

within a sparse patch may project more separably, to rep-

resent the manifold geometry more faithfully.

3.3 GPSVM algorithm

We embed the new regularizer into SVM objective and

present an alternative graph-based SVM algorithm—

GPSVM. The corresponding objective optimization prob-

lem is as follows:

min
f2HK ;ni2R

1

n

Xn

i¼1

ni þ cA fk k2
KþcGlocalf

T LGlocalf

s:t: yif ðxiÞ� 1� ni; i ¼ 1; . . .; n

ni� 0; i ¼ 1; . . .; n ð31Þ

Similarly to LapSVM [23], we can also easily prove that the

solution to this problem admits a representation in terms of an

expansion over the training samples. The proof is based on a

simple orthogonality argument as in LapSVM [23, 26, 27]:

Proposition 2 The solution of the optimization problem

(31) satisfies the Representer Theorem. That is,

f �ðxÞ ¼
Xn

i¼1

a�i Kðx; xiÞ ð32Þ

where Kðx; �Þ is the kernel function defined in the RKHS

Hk.

Proof Any function f 2 HK can be uniquely decomposed

into a component f k in the linear subspace spanned by the

kernel functions Kðxi; �Þf gn
i¼1, and a component f?

orthogonal to it. Thus,

f ¼ f k þ f? ¼
Xn

i¼1

aiKðxi; �Þ þ f?

By the reproducing property, as the following arguments

show, the evaluation of f on any data point xj (1 B j B n) is

independent of the orthogonal component f?:

f ðxjÞ ¼ f ;Kðxj; �Þ
� �

¼
Xn

i¼1

aiKðxi; �Þ;Kðxj; �Þ
* +

þ f?;Kðxj; �Þ
� �

Since the second term vanishes and Kðxi; �Þ;Kðxj; �Þ
� �

¼
Kðxi; xjÞ, it follows that f ðxjÞ ¼

Pn
i¼1 aiKðxi; xjÞ. Thus, the

empirical terms involving the loss function and the intrinsic

norm in the optimization problem (31) depend only on the

value of the coefficients aif gn
i¼1 and the Gram matrix of the

kernel function.

Indeed, since the orthogonal component only increases

the norm of f in Hk:

fk k2
K ¼

Xn

i¼1

aiKðxi; �Þ
�����

�����

2

K

þ f?k k2
H �

Xn

i¼1

aiKðxi; �Þ
�����

�����

2

K

It follows that the minimizer of (31) must have f? ¼ 0 and

therefore admits a representation f �ð�Þ ¼
Pn

i¼1 aiKðxi; �Þ. h

In the practical applications, we often add a scalar b in

the (32), which is an unregularized bias term. Hence, we

can redescribe the optimization problem (31) as:

min
1

n

Xn

i¼1

ni þ cAaT Kaþ cGlocala
T KLGlocalKa

s:t: yi

Xn

i¼1

aiK x; xið Þ þ b

 !
� 1� ni; i ¼ 1; . . .; n

ni� 0; i ¼ 1; . . .; n ð33Þ

where K is the Gram matrix and a ¼ ½a1; a2; . . .; an�T .

Introducing the Lagrange multipliers, we obtain the

primal problem as:

Lða;n;b;g;cÞ ¼ 1

n

Xn

i¼1

niþ aT cAKþ cGlocalKLGlocalK
� �

a

�
Xn

i¼1

gi yi

Xn

i¼1

aiKðx;xiÞþ b

 !
� 1þ ni

" #

�
Xn

i¼1

cini ð34Þ

Differentiating Lða;n;b;g;cÞ with respect to a, ni, and b,

and setting the results equal to zero, we get the following

conditions of optimality:
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oL

oa
¼ 2 cAK þ cGlocalKLGlocalK
� �

a� KYg ¼ 0

oL

oni

¼ 1

n
� gi � ci ¼ 0

oL

ob
¼
Xn

i¼1

giyi ¼ 0 ð35Þ

where Y ¼ diag½y1; y2; . . .; yn�.
Substituting (35) into the Lagrange function (34), we

can get the dual problem:

g� ¼ max
g2Rn

Xn

i¼1

gi �
1

2
gT Gg

s:t:
Xn

i¼1

giyi ¼ 0

0	 gi	
1

n
; i ¼ 1; . . .; n ð36Þ

where G ¼ 1
2

YKðcAI þ cGlocalL
GlocalKÞ�1Y.

The optimization problem (36) is a typical convex

optimization similar to SVM, which can be solved by the

same QP technique. Let the optimal solution be g*, the

corresponding expansion coefficient in (32) is

a� ¼ 1

2
ðcAI þ cGlocalL

GlocalKÞ�1Yg� ð37Þ

4 Experiments

To evaluate the proposed GPSVM algorithm, we have

performed sets of experiments in both toy and real datasets.

In the toy problem, we compared GPSVM with LapSVM

and SVM in a two-moon dataset classification case. Fur-

thermore, several real-world datasets in the UCI database

(the UCI Machine Learning Repository) have been used to

evaluate the classification accuracies derived from the three

algorithms.

Due to the relatively better performance of the kernel

version, here we uniformly compare the algorithms in the

Radial Basis Function (RBF) kernel and soft margin cases.

The width parameter r in the RBF kernel and the regu-

larizer parameters are selected from the set {2-8,

2-7,…,27, 28} by the cross-validation. We apply the SMO

algorithm [28] to solve the QP problems in the three

algorithms.

4.1 Toy problem

Two-moon dataset is a common used toy problem in the

comparisons of the classification algorithms. The dataset is

first randomly generated under two uniform distributions

for the two classes respectively and then made by the sine

and cosine transformations. Finally, the randomly normal

distributed data are added into the dataset as the noises

whose variance can be appointed in advance. Here, we

choose the dataset that contains one hundred samples

in each class and the variance of the noise 1.4. As shown

in Fig. 1a, ‘�’ and ‘?’ denote the training data in

the two classes, as well as ‘*’ and ‘9’ denote the testing

data.

For characterizing the global manifold trend of the

dataset optimally, we first classify the data according to the

generating uniform functions without the normal noises.

The corresponding discriminant plane is illustrated by the

dash dot line as the baseline in Fig. 1. Then, we compare

the classification performance of SVM (Fig. 1b), LapSVM

(Fig. 1c) and GPSVM (Fig. 1d) in the noise environment.

In LapSVM and GPSVM, the number of the k nearest

neighbors is fixed to 10. The three subfigures show the

discriminant planes of the three algorithms in the dataset.

Furthermore, the respective training and testing accuracies

are listed in Table 1.

From the results, it can be seen that

• SVM only concerns the separability between the two

classes, rather than the data geometry. As a result, the

derived discriminant plane always approximately lies in

the middle of the boundary points in the training set

[29] and cannot reflect the trend of the data manifold

completely (Fig. 1b). The difference between the

discriminant plane and the baseline is quite obvious.

Though SVM can achieve the best training accuracy in

the training set, it has poor performance in the testing

set.

• LapSVM introduces the local structure of the data

manifold into SVM by the Laplacian regularizer and

thus can describe the data distribution to some extent.

However, as shown in Fig. 1c, due to less emphasizing

the global structure information, LapSVM is relatively

sensitive to the local variations of the data, and the

corresponding discriminant plane is heavily affected by

the specific points near the boundary that are more

likely noises. Though the plane of LapSVM fits the

baseline better than SVM, there also has a big disparity

between the two planes, implying that LapSVM cannot

characterize the global manifold well. Consequently,

LapSVM still has worse performance than GPSVM in

the testing set.

• GPSVM captures the local and global structure infor-

mation of the data manifold simultaneously and gets

more reasonable discriminant plane than both SVM and

LapSVM which basically accords with the baseline.

Therefore, GPSVM has the best classification perfor-

mance in the testing set, which means that GPSVM has

better generalization ability owing to the more reason-

able description of the data global distribution.
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4.2 UCI dataset

To further investigate the effectiveness of our proposed

GPSVM, we also evaluate its performance in several real-

world datasets in the UCI database. For each dataset, we

divide the samples into two non-overlapping training and

testing sets, and each set contains almost half of samples in

each class respectively. This process is repeated ten times

to generate ten independent runs for each dataset and then

the average results are reported. Throughout the experi-

ments, we choose the best k between two and

minc numberðncÞf g � 1ð Þ by the cross-validation in LapS-

VM and GPSVM.

4.2.1 Accuracy comparison

We list the experimental results in Table 2. In each block

in the table, the first row is the training accuracy and

variance, and the second row is the testing accuracy and

variance. We can make several observations from the

results:

• GPSVM is consistently superior to SVM in the overall

datasets both in the training and testing accuracies,

owing to the consideration of the data distribution

geometry. Moreover, GPSVM also outperforms LapS-

VM in almost all the datasets except in Bupa and

Ionosphere, because GPSVM further incorporates with

the global manifold structure information.

• The training and testing accuracies of GPSVM are

basically comparable in the datasets, implying that

GPSVM has good generalization performance. The

variances further show the good stability of GPSVM.

• In order to find out whether GPSVM is significantly

better than SVM and LapSVM in the statistical sense, we

perform the t-test on the classification results of the ten

Table 1 The training and testing accuracies (%) of Baseline, SVM,

LapSVM, and GPSVM in the two-moon dataset

Baseline SVM LapSVM GPSVM

Training set 96.00 100.00 96.00 96.00

Testing set 95.00 92.00 92.00 96.00

The emphasis values are the best testing accuracies among the

compared algorithms in the datasets

Fig. 1 The discriminant planes in the two-moon dataset: Baseline (a), SVM (b), LapSVM (c), and GPSVM (d)
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runs to calculate the statistical significance of GPSVM.

The null hypothesis H0 demonstrates that there is no

significant difference between the mean number of

patterns correctly classified by GPSVM and the other

two methods. If the hypothesis H0 of each dataset is

rejected at the 5% significance level, i.e., the t-test value

is more than 1.7341, the corresponding results in Table 2

will be denoted ‘*’. Consequently, as shown in Table 2, it

can be clearly found that GPSVM possesses significantly

superior classification performance compared with the

other two methods in almost all datasets, especially

according to the testing accuracies.

Remark It is worth to point out that in the experiments,

the discrepancy of the accuracies between SVM and the

other two algorithms is distinct, but that between LapSVM

and GPSVM is relatively slight. The reason more likely lies

in the looseness of the global structure measure used in

GPSVM. In fact, the goal of the paper is to attempt a

beneficial integration of the global manifold information

into the locality graph-based classifier design, because the

only consideration for the locality seems not sufficient to

characterize the data geometry faithfully and globally.

Actually, the present work manifests exactly that the whole

or global distribution information plays a favorable role in

both dimensionality reduction [24] and classifier design.

However, for the being time, the related study is relatively

less in pattern recognition and machine learning. In future,

we will devote to research of how to develop a tighter

global structure measure to further characterize the mani-

fold accurately and improve the classifier performance.

4.2.2 Parameter selection

The option of the regularizer parameter is vital for the

performance of the graph-based methods, which is still an

open problem in machine learning. Usually, the parameters

are selected through the cross-validation. Here we choose

the dataset Pima to illustrate how the different parameter

selections arouse the variations in the average testing

accuracies, in order to further compare the classification

performance of the three algorithms in the different

parameter conditions.

We fix the number of the k nearest neighbors and the

width parameter r in the RBF kernel to 10 and 1

Table 2 The training and testing accuracies (%), and variances

compared between SVM, LapSVM, and GPSVM in the UCI datasets

Dataset Classification accuracy

SVM LapSVM GPSVM

Automobile 95.63* ± 0.01 95.75 ± 0.01 96.25 ± 0.03

88.48* ± 0.01 87.85* ± 0.01 88.99 ± 0.01

Bupa 75.68* ± 0.08 79.03 ± 0.07 78.59 ± 0.03

73.06* ± 0.06 78.72* ± 0.03 77.25 ± 0.02

Pima 76.04* ± 0.01 78.80 ± 0.05 78.94 ± 0.05

77.08* ± 0.02 77.88* ± 0.03 78.26 ± 0.06

Ionosphere 96.80* ± 0.02 98.51 ± 0.02 98.29 ± 0.03

95.11* ± 0.02 98.30 ± 0.03 98.12 ± 0.05

Sonar 86.54* ± 0.15 95.24 ± 0.09 95.37 ± 0.05

85.00* ± 0.13 91.26* ± 0.07 92.58 ± 0.05

Water 98.47 ± 0.02 98.57 ± 0.04 98.61 ± 0.02

90.51* ± 0.09 98.21 ± 0.04 98.53 ± 0.03

Wdbc 92.54* ± 0.01 98.94 ± 0.04 97.69 ± 0.02

94.25* ± 0.01 94.84* ± 0.05 95.21 ± 0.04

The emphasis values are the best testing accuracies among the

compared algorithms in the datasets

‘*’ Denotes that the difference between GPSVM and the other two

methods is significant at 5% significance level, i.e., t-value [ 1.7341

Fig. 2 The average testing accuracy variation corresponding to the different regularizer parameters in the three algorithms in Pima: parameter of

manifold regularizer (a) and parameter of Tikhonov regularizer (b)
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respectively. The Laplacian regularizer and Glocalization

Pursuit regularizer are uniformly called as the manifold

regularizer, for distinguishing from the Tikhonov regular-

izer. Referring to [23], we first fix the parameter of the

Tikhonov regularizer to 2-8 and change the parameter of

the manifold regularzer from 2-8 to 28. The variations of

the average testing accuracies in the three algorithms are

showed in Fig. 2a. Similarly, we then fix the parameter of

the manifold regularizer to 1 and compare the accuracies

corresponding to the transformation of the parameter of the

Tikhonov regularizer from 2-8 to 28, as illustrated in

Fig. 2b.

On the one hand, the accuracy curves vibrate heavily

with the varying parameters in the figures, implying that

the different selections of the parameters indeed severely

affect the performance of the classifier. Furthermore, the

values of the optimal parameter in the various algorithms

are quite different as well, which validates the conclusion

that without any prior knowledge, we hardly appoint the

optimal parameters.

On the other hand, the figures also present that whatever

the parameters is in the range under consideration, the

accuracies of GPSVM all along excel those of the other two

algorithms. Moreover, for the same parameter, GPSVM

always possesses the best average testing accuracy, which

further verifies the superior performance of GPSVM.

5 Conclusion

In this paper, we propose an alternative regularizer termed

as Glocalization Pursuit regularizer. Inspired by our pre-

vious ARLE, we first introduce a natural global measure to

indicate the global compactness of data manifold distri-

bution based on the local linear patches on the graph. The

global measure is then embedded into the regularizer,

which has been validated that such embedment can reach

more compact manifold description than the traditional

Laplacian regularizer. We further add the new regularizer

into SVM to propose an alternative graph-based SVM

algorithm called as Glocalization Pursuit Support Vector

Machine (GPSVM). GPSVM not only inherits the good

properties of SVM but also remedies the relative sensitivity

of LapSVM to the local variations in the data manifold due

to the less emphasis on the global structure information in

the Laplacian regularizer. The experimental results have

demonstrated the superiority of GPSVM compared with

SVM and LapSVM.

Throughout the paper, we classify the various graph-

based methods from the different loss functions and regu-

larizers. Here, we choose the framework based on the hinge

loss function and the Tikhonov regularizer, and derive the

GPSVM algorithm. In future, we will further incorporate

the proposed Glocalization Pursuit regularizer with the

other loss functions and regularizers, and systematically

compare the different classification performances of these

algorithms. Furthermore, here we construct the new regu-

larizer based on the manifold dimensional reduction

method ARLE. We can further refer to other new manifold

methods and combine them with the regularizer to reflect

the data distribution more faithfully and finally improve the

classifier design.
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